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1. INTRODUCTION
The AFM is a proven tool for visualizing single biological
molecules, such as DNA [1-18] or proteins [19-21], and for
studying their mechanical properties and interactions under
near-physiological conditions [19, 22].

    For studying protein activity at both good time and force
resolution, however, it is necessary to optimize the AFM
cantilever's ratio between resonance frequency and spring
constant. A higher resonance frequency is desirable for two
reasons: First, the resonance frequency limits the rate at which
information about the sample can be obtained. It therefore puts
an upper limit on the measurement bandwidth in general, or
the imaging frame rate in particular. Second, a higher reso-
nance frequency decreases the cantilever thermal noise for a
given measurement bandwidth [Fig. 1]. The cantilever gener-
ates one kT of thermal noise per resonance interval. For a higher
resonance frequency, a given measurement bandwidth becomes
a smaller fraction of one resonance interval of the cantilever,
and thus contains a smaller fraction of one kT of thermal noise.

    We micro machined small cantilevers [23-25] which are
about a factor of 1000 smaller in mass than commercial
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cantilevers. Fig. 1 shows a small cantilever with a width of
5 micrometers in front of human red blood cells for scale
comparison. The cantilevers are made of silicon nitride, and
have spring constants of, for example, 0.064N/m at a reso-
nance frequency of 180kHz in liquid.  The factor of 1000 in
mass gives a resonant frequency,    (k/m)1/2 that is larger by
a factor of order √1000 ≈ 30 for the same spring constant, k!
The result of spreading the kT thermal noise out over a fre-
quency range that is thirty times higher is to decrease the noise
per root Hz by √30 ≈ 5. These theoretical estimates are met in
real measurements [25].

    These new small cantilevers require new AFM hardware
which generates a smaller laser spot size comparable to the

Fig. 1: SEM image of a small cantilever with an Electron Beam
Deposited (EBD) tip, over a field of human red blood
cells, for scale.
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size of the cantilever. After several iterations, a small cantile-
ver head was developed that can fit on top of a standard Veeco/
Digital Instruments Multimode [26] AFM.

2. EXPERIMENTS
Imaging biological molecules in their active state requires can-
tilevers with a stiffness comparable to that of the sample
molecules. The increased measurement bandwidth of small
cantilevers [25] enabled us to monitor the complex formation
of several Gro-El / Gro-Es chaperone molecules simulta-
neously with a time resolution of ~0.1s [27]. First, a film of
Gro-El molecules was imaged with the Gro-Es co-proteins
present in solution. Then, the AFMs slow scan axis was
disabled, and the height profile of one scan line was plotted

over time [Fig. 3]. After adding ATP to the system, sudden
changes in height can be seen for individual Gro-El molecules
as a function of time. The changes do not occur when either
ATP or Gro-Es is not present. The height fluctuations can be
attributed to Gro-Es molecules attaching to the Gro-El ring,
and their desorption seconds later. The high time resolution of
the experiment (~12 line scans/s) allows to histogram the com-
plex lifetime. The result is a complex lifetime function that
peaks around 5s.

    Another practical advantage of the improved stiffness-to-
resonance frequency ratio of small cantilevers is their improved
imaging speed [28]. Fig. 4 shows an image of DNA on mica in
buffer (40 mM HEPES, 10 mM MgCl

2
, pH 7.4) that was taken

in only 20s using small cantilevers. At this point, a further
increase of imaging speed depends on the development of new
faster scanners and electronics.

    The improved noise per measurement bandwidth perfor-
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Fig. 2: Small cantilevers are better: the resonance frequency
is ~30x higher for a cantilever of comparable spring
constant. This leads to smaller thermal noise for a given
measurement bandwidth.

Fig. 3: GroEL chaperones, AFM 2D image (left), and 1D over
time (right).
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mance makes small cantilevers the ideal tool for molecular
force spectroscopy (pulling) experiments. We studied the me-
chanical properties of collagen and rat femur under different
ionic conditions [29]. A small cantilever was brought in con-
tact with a collagen [30] coated surface, and force vs. distance
curves were obtained with varying time intervals between suc-
cessive pulls. We observed that the energy dissipated in a pull
depends strongly on the time interval since the last pull in a
calcium-rich buffer, but not in a buffer only containing so-
dium ions. [Fig. 5: Fig. 1 Nature paper]. The experiment was

then repeated on a polished rat femur, with consistent results.
AFM indentation testing on rat femur previously soaked in
the two different buffers again showed the same recovery
behavior, this time for a larger number of involved molecules.

    In summary, small cantilevers provide two major advan-
tages for studying biological samples: fast imaging speed and
low noise for force spectroscopy. The future goal is to increase
the speed of all components of an AFM setup to perform time
dependent biological experiments on time scales a factor of
30 faster than possible with current commercial instruments.
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